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Dell, a multi-national computer technology company

• Dell Inc., one of the largest 
technology companies in the world 
with 138,000 employees.

• A new trends in IT:
• Stress on service; Lower profit 

margin of production. 

• Dell as a leader in after-sales service. 

• Paradigm shifts in services (Larson 
2016; Davenport & Kudyba 2016).
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SupportAssist: Dell’s solution for aftersales service

• For a wide range of Dell 
devices. 

• Continuously stores data 
from millions of devices

• Predicts failure before they 
happen.  

• Notifies/fixed the problems.
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• SupportAssist: a proactive maintenance system utilizing Machine Learning 
and Big Data. 



Dilemma
• Not yet achieved the level of adoption anticipated. 

• Adoption rate is not increasing in all market segments.

4

Research question: why is this happening, and what can be done to make the 
SupportAssistprogram more successful in the market.

To develop SupportAssist Adoption Model (SAAM) to use as a decision support 
system and analyze effects of different marketing/design strategies. 

Idea 

• Building on Bass (1969) Model, and on previous SD applications (Rouwette & Ghaffarzadegan 2013) and 
models of market adoption (e.g., Milling 1996; Jalali et al. 2016), especially the OnStar case (Barabba et al 
2003). 
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Methodology

• Data: 
• Interview: About 20 interviews with different managers, engineers at Dell. 

• Archival data: Review of 3 years of weekly reports on SupportAssist, and its 
performance; Review of customer research; Review of data on websites. 

• Detailed quantitative data of market adoption. 

• System dynamics method (Sterman 2000)

• Iterative model building: Model building Ą presentation (bi-weekly) Ą
Model building. 

• Market segments (device X customer type X region)
• First focus: Adoption of SupportAssist in Servers of mid-size companies with 50-

300 servers in US region only (example: a university).  
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Model Structure

• The main model is very detailed (in terms of number variables, and 
sectors). 
• The main model is validated using classic validation and verification 

techniques (Barlas 1996) and calibrated and tested against the historical 
trends (Homer 2012; Oliva 2003; Hosseinichimeh et al. 2015; 2017). 

• Here due to confidentiality we do not report the main model and any 
sensitive data. 
• We report a simple version, model Alpha (which uses synthetic data due to 

confidentiality). Learning from simple models is proved to be often more 
effective than detailed models (Ghaffarzadegan et al. 2011). 
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Flow of potential customers to adopters
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Assumption: no new potential adopters



Flow of potential customers to adopters
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“…just if we could persuade them [Dell customers] to test SupportAssist.” 

Dell expert in product development
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Model structure
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More customers, better performance
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Growth in marketing initiatives
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Main structures together
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Results
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Results: Business as Usual Predicts a Gradual Market 
Adoption Growth of SupportAssist
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Results: A Sole Focus on Design or Marketing has 
Marginal Effects
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Results: Model Calibration Uncovers Pipeline Leakage
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Results: SupportAssist Experiential Learning for Evaluators 
is Ineffective
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Table 1: The chance of experiencing the value of a support service depends on the number of 
devices receiving the support service.  

 The chance of experiencing SupportAssist value for different customers 

Scenario: The 
chance of failure 
of 1 device 

Customer with 1 
device on 
SupportAssist 
(Evaluator) 

Customer with 2 
devices on 
SupportAssist 
(Evaluator) 

Customer with 
50 devices on 
SupportAssist 
(Mass adopter) 

Customer with 
100 devices on 
SupportAssist 
(Mass adopter) 

0.01 0.01 0.02 0.39 0.63 

0.02 0.02 0.04 0.64 0.87 

0.05 0.05 0.10 0.92 0.99 

0.1 0.10 0.19 0.99 1.00 
Note 1: Experiencing value = Having at least one device fail = 1 – (1-chance of failure in one 
device)^number of devices. Note 2: Color coded; Red less experience of value; Green more experience 
of value. 
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Model-based strategic planning

Navid Ghaffarzadegan et al. (2017) 20

Potential Adopters
(PA)

Evaluators (E) Adopters (A)

Evaluating rate
Adoption after

evaluation

Immidiate
adoption

Attrition from
evalation stage

Attrition from
Adoptors

Strategy 1

Strategy 2

Strategy 3



Results: Model-based strategic planning
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Results: Change in Marketing Focus
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P1 [100% improvement in design], 

P2 [100% improvement in marketing])
P3: Shift in marketing focus



Conclusion

• Product: A Decision Support System for SupportAssist 

• Outcome level 1: 
• Better “design” and more “marketing” are effective, but the effects are marginal
• Effective policies are combinations of different strategies.

• Outcome level 2: Challenging mental models: 
• Model Calibration Uncovers Pipeline Leakage

• Evaluation has significant attrition.
• SupportAssist’sExperiential Learning for Evaluators is Ineffective. 

• Outcome level 3: Model-based strategic planning
• Change in Marketing Focus –Focus on mass adoption. 

• Outcome level 4: Modeling process as a continuous insight generation 
process includes data gathering, molding, presentation, questioning mental 
models, (and again) data gathering, ….. 
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Thank you!

Email: navidg@vt.edu
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